1
Bạn cần hỗ trợ?
Tiếng Việt
English
 
Quảng cáo các trang con

Các Phương pháp xác định COD, BOD, DO

Cập nhật: 23/08/2017
Lượt xem: 10756
 

bod1. BOD:

Nhu cầu ôxy hóa sinh học hay nhu cầu ôxy sinh học (ký hiệu: BOD, từ viết tắt trong tiếng Anh của Biochemical (hay Biological) Oxygen Demand) là lượng oxy cần cung cấp để oxy hoá các chất hữu cơ trong nước bởi vi sinh vật. BOD là một chỉ số và đồng thời là một thủ tục được sử dụng để xác định xem các sinh vật sử dụng hết ôxy trong nước nhanh hay chậm như thế nào. Nó được sử dụng trong quản lý và khảo sát chất lượng nước cũng như trong sinh thái học hay khoa học môi trường.

BOD5: Để Oxy hoá hết chất hữu cơ trong nước thường phải mất 20 ngày ở 20oC. Để đơn giản người ta chỉ lấy chỉ số BOD sau khi Oxy hoá 5 ngày, ký hiệu BOD5. Sau 5 ngày có khoảng 80% chất hữu cơ đã bị oxy hoá.
 

Phương pháp xác định BOD:

Thử nghiệm BOD được thực hiện bằng cách hòa loãng mẫu nước thử với nước đã khử ion và bão hòa về ôxy, thêm một lượng cố định vi sinh vật mầm giống, đo lượng ôxy hòa tan và đậy chặt nắp mẫu thử để ngăn ngừa ôxy không cho hòa tan thêm (từ ngoài không khí). Mẫu thử được giữ ở nhiệt độ 20°C trong bóng tối để ngăn chặn quang hợp (nguồn bổ sung thêm ôxy ngoài dự kiến) trong vòng 5 ngày và sau đó đo lại lượng ôxy hòa tan. Khác biệt giữa lượng DO (ôxy hòa tan) cuối và lượng DO ban đầu chính là giá trị của BOD. Giá trị BOD của mẫu đối chứng được trừ đi từ giá trị BOD của mẫu thử để chỉnh sai số nhằm đưa ra giá trị BOD chính xác của mẫu thử.

Ngày nay việc đo BOD được thực hiện bằng phương pháp chai đo BOD Oxitop: Đặt chai trong tủ 20oC trong 5 ngày, BOD được đo tự động khi nhiệt độ đạt đến 20oC. Giá trị BOD được ghi tự động sau mỗi 24 giờ.

Ví dụ: đối với nước thải sinh hoạt và nước thải của một số ngành công nghiệp có thành phần gần giống với nước thải sinh hoạt thì lượng oxy tiêu hao để oxy hóa các chất hữu cơ trong vài ngày đầu chiếm 21%, qua 5 ngày đêm chiếm 87% và qua 20 ngày đêm chiếm 99%. Để kiểm tra khả năng làm việc của các công trình xử lý nước thải người ta thường dùng chỉ tiêu BOD5. Khi biết BOD5 có thể tính gần đúng BOD20 bằng cách chia cho hệ số biến đổi 0,68.

BOD20 = BOD5 : 0,68

Hoặc tính BOD cuối cùng khi biết BOD ở một thời điểm nào đó người ta có thể dùng công thức:

BODt = Lo (1 - e-kt)

hay BODt = Lo (1 - 10-Kt)

trong đó

BODt: BOD tại thời điểm t (3 ngày, 5 ngày...)

Lo: BOD cuối cùng

k: tốc độ phản ứng (d-1) tính theo hệ số e

K: tốc độ phản ứng (d-1) tính theo hệ số 10, k = 2,303(K)
 

2. COD:

Chỉ tiêu BOD không phản ánh đầy đủ về lượng tổng các chất hữu cơ trong nước thải, vì chưa tính đến các chất hữu cơ không bị oxy hóa bằng phương pháp sinh hóa và cũng chưa tính đến một phần chất hữu cơ tiêu hao để tạo nên tế bào vi khuẩn mới.

Do đó để đánh giá một cách đầy đủ lượng oxy cần thiết để oxy hóa tất cả các chất hữu cơ trong nước thải người ta sử dụng chỉ tiêu nhu cầu oxy hóa học.

Nhu cầu ôxy hóa học (COD - viết tắt từ tiếng Anh: chemical oxygen demand) là lượng oxy có trong Kali bicromat (K2Cr2O7) đã dùng để oxy hoá chất hữu cơ trong nước. Chỉ số COD được sử dụng rộng rãi để đo gián tiếp khối lượng các hợp chất hữu cơ có trong nước. Phần lớn các ứng dụng của COD xác định khối lượng của các chất ô nhiễm hữu cơ tìm thấy trong nước bề mặt (ví dụ trong các con sông hay hồ), làm cho COD là một phép đo hữu ích về chất lượng nước. Nó được biểu diễn theo đơn vị đo là miligam trên lít (mg/L), chỉ ra khối lượng ôxy cần tiêu hao trên một lít dung dịch.
 

Phương pháp xác định COD:

Trong nhiều năm, tác nhân ôxi hóa mạnh là pemanganat kali (KMnO4) đã được sử dụng để đo nhu cầu ôxy hóa học. Tính hiệu quả của pemanaganat kali trong việc ôxi hóa các hợp chất hữu cơ bị dao động khá lớn. Điều này chỉ ra rằng pemanganat kali không thể có hiệu quả trong việc ôxi hóa tất cả các chất hữu cơ có trong dung dịch nước, làm cho nó trở thành một tác nhân tương đối kém trong việc xác định chỉ số COD.

Kể từ đó, các tác nhân ôxi hóa khác như sulfat xêri, iodat kali hay dicromat kali đã được sử dụng để xác định COD. Trong đó, dicromat kali (K2Cr2O7) là có hiệu quả nhất: tương đối rẻ, dể dàng tinh chế và có khả năng gần như ôxi hóa hoàn toàn mọi chất hữu cơ.

Phương pháp đo COD bằng tác nhân oxy hoá cho kết quả sau 3 giờ và số liệu COD chuyển đổi sang BOD khi việc thí nghiệm đủ nhiều để rút ra hệ số tương quan có độ tin cậy lớn.

Kết hợp 2 loại số liệu BOD, COD cho phép đánh giá lượng hữu cơ đối với sự phân hủy sinh học.

3. DO:

DO (Dessolved Oxygen) là lượng oxy hòa tan trong nước cần thiết cho sự hô hấp của các thủy sinh. Trong các chất khí hòa tan trong nước, oxy hòa tan đóng một vai trò rất quan trọng. Oxy hòa tan cần thiết cho sinh vật thủy sinh phát triển, nó là điều kiện không thể thiếu của quá trình phân hủy hiếu khí của vi sinh vật. Khi nước bị ô nhiễm do các chất hữu cơ dễ bị phân hủy bởi vi sinh vật thì lượng oxy hòa tan trong nước sẽ bị tiêu thụ bớt, do đó giá trị DO sẽ thấp hơn so với DO bảo hòa tại điều kiện đó. Vì vậy DO được sử dụng như một thông số để đánh giá mức độ ô nhiễm chất hữu cơ của các nguồn nước. DO có ý nghĩa lớn đối với quá trình tự làm sạch của sông (assimilative capacity - AC). Đơn vị tính của DO thường dùng là mg/l.
 

Phương pháp xác định DO.

Có thể xác định DO bằng hai phương pháp khác nhau:

- Phương pháp Winkler (hóa học).

- Phương pháp điện cực oxy hòa tan - máy đo oxy.
 

Kỹ thuật phân tích.

- Phương pháp Winkler:

Cách tiến hành: Oxy trong nước được cố định ngay sau khi lấy mẫu bằng hỗn hợp chất cố định (MnSO4, KI, NaN3), lúc này oxy hòa tan trong mẫu sẽ phản ứng với Mn2+ tạo thành MnO2. Khi đem mẫu về phòng thí nghiệm, thêm acid sulfuric hay phosphoric vào mẫu, lúc này MnO2 sẽ oxy hóa I- thành I2. Chuẩn độ I2 tạo thành bằng Na2S2O3 với chỉ thị hồ tinh bột. Tính ra lượng O2 có trong mẫu theo công thức:

DO (mg/l) = (VTB x N/ VM ) x 8 x 1.000

Trong đó: VTB: là thể tích trung bình dung dịch Na2S2O3 0,01N  (ml) trong các lần chuẩn độ.

N: là nồng độ đương lượng gam của dung dịch Na2S2O3 đã sử dụng.

8: là đương lượng gam của oxy.

VM: là thể tích (ml) mẫu nước đem chuẩn độ.

1.000: là hệ số chuyển đổi thành lít.

- Phương pháp điện cực oxy hoà tan- máy đo oxy:

Đây là phương pháp được sử dụng rất phổ biến hiện nay. Máy đo DO được dùng để xác định nồng độ oxy hòa tan ngay tại hiện trường. Điện cực của máy đo DO hoạt động theo nguyên tắc: dòng điện xuất hiện trong điện cực tỷ lệ với lượng oxy hòa tan trong nước khuếch tán qua màng điện cực, trong lúc đó lượng oxy khuếch tán qua màng lại tỷ lệ với nồng độ của oxy hòa tan. Đo cường độ dòng điện xuất hiện này cho phép xác định được DO

Hoahocngaynay.com

Nguồn Sở KH&CN Bến Tre

Các tin tức khác:
Thông số vận hành hệ thống xử lý nước thải môi trường bằng phương pháp sinh học hiếu khí (395 Lượt xem)
Công nghệ xử lý nước ngầm thành nước cho sinh hoạt (204 Lượt xem)
Công nghệ xử lý nước biển thành nước cấp cho sinh hoạt (689 Lượt xem)
HƯỚNG DẪN CHỌN VAN CỬA PHAI (777 Lượt xem)
Sản Xuất Van Cửa Phai (2159 Lượt xem)
SCADA là gì? Tại sao những doanh nghiệp hiện nay lại cần đến hệ thống SCADA? (462 Lượt xem)
Tính toán thiết kế bể SBR (10737 Lượt xem)
Tổng quan nghiên cứu công nghệ SBR (4747 Lượt xem)
Tổng Hợp Các Mẫu Thiết Kế Bản Vẽ Van Cửa Phai Mới Nhất 2019 (620 Lượt xem)
Xử lý nước thải sinh hoạt bằng vi sinh vật hiếu khí (246 Lượt xem)
Ưu - Nhược điểm của công nghệ xử lý nước thải SBR (874 Lượt xem)
Các hệ thống xử lý nước thải cho môi trường hiện nay (599 Lượt xem)
HỆ THỐNG XỬ LÝ NƯỚC THẢI CHI PHÍ THẤP (450 Lượt xem)
Nghiên cứu xử lý nước thải sinh hoạt bằng cây chuối hoa (158 Lượt xem)
Hướng dẫn lắp đặt van cửa phai (penstock) (992 Lượt xem)
Xử lý nước thải đô thị bằng công nghệ MBR (381 Lượt xem)
Tổng quan về Xử lý nước thải bệnh viện (Phần 4) (412 Lượt xem)
Thiết bị phơi khô bùn Huber Belt Dryer BT (236 Lượt xem)
Giải pháp loại bỏ mùi hôi nồng nặc và các độc tố của hệ thống xử lý nước thải tập trung (1101 Lượt xem)
Xử lý cơ học (577 Lượt xem)
Tin tức đọc nhiều:
Tính toán thiết kế và vận hành bể tự hoại (Septic) (55058 Lượt xem)
Hồ sinh học trong xử lý nước thải (21955 Lượt xem)
Nguyên nhân gây nên váng, bọt trong bể hiếu khí? (19449 Lượt xem)
Bể lọc ngược qua tầng bùn kỵ khí (bể UASB) (15585 Lượt xem)
Vi khuẩn vi sinh dạng sợi trong xử lý nước thải (13652 Lượt xem)
Hệ thống bơm Airlift - Bơm siêu tiết kiệm năng lượng (13384 Lượt xem)
Tổng hợp bản vẽ chi tiết, sơ đồ công nghệ thiết kế hệ thống xử lý nước thải (12184 Lượt xem)
Ứng dụng phương pháp Tuyển nổi áp lực xử lý nước rửa lọc (10863 Lượt xem)
Tính toán thiết kế bể SBR (10737 Lượt xem)
SONG CHẮN RÁC (SCREEN) (10677 Lượt xem)
CÔNG NGHỆ VI SINH VẬT TRONG XỬ LÝ RÁC THẢI (10244 Lượt xem)
BỂ LẮNG CÁT (GRIT CHAMBER) (9042 Lượt xem)
TÍNH TOÁN HỆ THỐNG XLNT AO (8722 Lượt xem)
Trạm xử lý nước cấp với công nghệ lọc tự rửa (8533 Lượt xem)
Công nghệ xử lý nước thải ngành tái chế giấy (7918 Lượt xem)
Hệ thống xử lý nước thải tinh bột sắn (7731 Lượt xem)
TÍNH TOÁN THIẾT KẾ BỂ LẮNG HAI VỎ ( BỂ LẮNG IMHOFF) (7196 Lượt xem)
Tính toán thiết kế bể lọc ngược qua tầng bùn kỵ khí (UASB) (6895 Lượt xem)
Tính toán thiết kế bể lọc kỵ khí (6739 Lượt xem)
Công nghệ lọc trọng lực tự động (lọc tự rửa, lọc không van) (6610 Lượt xem)
sismat
Google Ads

Công ty Cổ Phần WESTERNTECH VIỆT NAM

Công ty Cổ phần WesternTech Việt Nam - Westerntech Vietnam.,JSC - © 2015 westerntechvn.com.vn
Email: info@westerntechvn.com
Tầng 12, Tòa nhà Licogi 13, Số 164 Khuất Duy Tiến, Thanh Xuân, Hà Nội
Điện thoại: +84 24 6675 6815 , Hotline: +84 9 6760 8585
                   

van cửa phai, WESTERNTECH VIỆT NAM

FaceBook
Twitter
Google+
Youtube
Bản quyền thuộc về WesterntechVietnam
Đang Online:17
Tổng truy cập:2048535